' Roseman Labs

Machine Learning on Encrypted Data
Niek J. Bouman

April, 2024

1 Introduction

The ability to extract insights from disconnected confidential-data silos has lots of business
value. The traditional approach of centrally combining data sources into a joint data set, and
then performing data analysis, typically suffers from a lack of trust from the data owners,
and, in case of personal data, is often not compliant with data privacy laws.

The advent of Privacy Enhancing Technologies (PETs) is a game changer for exactly this
type of multi-owner data analyses: encrypted computing technologies like Secure Multi-
Party Computation (MPC) and Fully Homomorphic Encryption (FHE) provide novel, trust-
worthy and regulatory-safe solutions. Gartner predicts that 60% of large organizations will
use one or more privacy-enhancing computation techniques in analytics, business intelli-
gence or cloud computing by 2025. [G22]

At Roseman Labs we have built a groundbreaking solution to train and use Al/ML on data
that is too sensitive to be shared. Our solution is used by 150+ organizations across Health-
care, Public Sector and Financial Services to solve real world problems.

The Roseman Labs platform enables you to encrypt, link and analyze multiple data sets,
while safeguarding the privacy and commercial sensitivity of the underlying data. You can
combine information from several organizations, run your analyses on records at a granular
level, and generate new insights — all without ever being able to view other participants’
input. You get the insights you need, while the data stays protected.

11 Making Encrypted Computing Mainstream

Roseman Labs is on a mission to make encrypted computing mainstream, by which we
concretely mean that quality, performance, scalability, availability and affordability surpass
a joint threshold at which encrypted computation becomes the technology of choice for
most confidential data analyses:

« Quality: the quality (numerical accuracy, etc.) of the results of privacy-preserving
training and inference is comparable to their cleartext baselines (results obtained us-
ing cleartext computations);

« Performance: the solution meets its latency and throughput requirements of common
real-world applications;

« Scalability: the solution is capable of processing data volumes that are required in
common real-world applications;

« Availability: the system runs on commercial off-the-shelf hardware, instead of relying
on non-ubiquitous hardware accelerators;

' Roseman Labs

» Affordability: achieve cost-effectiveness through a combination of choosing the right
set of trade-offs, leveraging efficient algorithms, making highly optimized software
implementations and performing application-specific resource provisioning during de-
ployment.

In this document, we will demonstrate by means of various benchmarks that our MPC en-
gine can realize these goals. For example, we will see that the quality of a secure logistic
regression model trained in MPC by our software is as good as a solution found by scikit-
learn, a popular Python package for (cleartext) machine learning. Also, we prove by means
of several benchmarks that high-performance data processing is not only feasible with
MPC, but that our engine excels in nearly all benchmarks.

Also, we illustrate our ability to scale vertically, which demonstrates our focus on exploit-
ing hardware parallelism. Our software runs on smaller as well as larger multi-core servers,
which are ubiquitous in today’s clouds. This is a strong benefit over Fully Homomorphic
Encryption; essentially all FHE-based solutions rely on future specialized hardware accel-
eration technology for their performance promise.

In the following sections, we will describe the steps involved to train a machine learning
model on encrypted data, thus without ever revealing that data. We will use logistic regres-
sion as a running example, and explain the basics of logistic regression, and how a model is
trained. Also, we will demonstrate data preparation in the context of encrypted computing.
Finally, we will run various benchmarks to demonstrate the state of the art.

1.2 DataPreparation in the Context of Collaborative Encrypted Com-
puting

In a collaborative setting, participants each provide part of the data. When we want to train
a machine learning model in this setting, we need to join those separately provided parts
into one data set. Let us assume that the data is provided in tabular form, which is a natural
assumption given the ubiquity of relational databases.

The main challenge here is that we cannot use an ordinary database to perform this join op-
eration, because then all data would have to be revealed to that database. Hence, to avoid
such unwanted data leakage, the entire join operation must be performed as an encrypted
computation on the encrypted tables.

We distinguish between “horizontally partitioned” and “vertically partitioned” tabular data;
see also Figure 1. Let us explain these notions for the case of two data providers.

Horizontally partitioned means that both providers have different subjects in their data
tables, but both have information about the same features. For example, data provider 1
has information about Alice and Fred, while data provider 2 has information about Mary and
Josh. But both providers know their first name, last name and favorite color.

Vertically partitioned means that provider 1 and 2 each know different features about the
same subjects. For example, provider 1 knows the first and last name of each subject, while
provider 2 knows the favorite color of those subjects.

When we would like to join these tables exactly, we need a unique identifier for each subject.
For persons, think of a unique social security number. Then, to join horizontally partitioned
data we would perform, in SQL terminology, an OUTER JOIN (followed by some minor post
processing), while to join vertically partitioned data we would perform an INNER JOIN.

' Roseman Labs

Horizontal Partitions Vertical Partitions
HP1 VP1 VP2
CUSTOMER FIRST LAST FAVORITE CUSTOMER FIRST LAST CUSTOMER| FAVORITE
D NAME NAME COLOR D NAME NAME D COLOR
1 ALICE JOHNSSON BLUE 1 ALICE JOHNSSON 1 BLUE
2 FRED BAKER GREEN 2 FRED BAKER 2 GREEN
3 MARY COOK 3 PURPLE
4 4 AUBERGINE
HPZ JOSH LEVI
CUSTOMER FIRST LAST FAVORITE
D NAME NAME COLOR
3 MARY COOK PURPLE
4 JOSH LEVI JAUBERGINE

Figure 1: Horizontally vs. vertically partitioned data.

Later, we will present some benchmarks of elementary tabular operations, like joining tables
of various sizes. Before presenting those, we will give some more background information
on logistic regression. Readers who wish to jump to the benchmarks immediately can follow
this link.

Note that two other important data preparation steps are data re-scaling (normalization)
and splitting the data set into a training set and a test set. Typically, these steps have to be
carried out using encrypted computations, because by the time these steps are performed,
the input data has already been encrypted.

2 Preliminaries

2.1 Binary Logistic Regression

Binary (or binomial) logistic regression (usually attributed to Berkson, 1944) is a statistical
method for predicting a two-outcome variable (0 or 1, “yes” or “no”, etc.) based on a number
of features. For example, think of a doctor who wants to predict whether a cancer tumor is
malignant or benign, based on various patient characteristics (like age, gender) and various
characteristics of the cancer tissue.

Sometimes, we want to predict the probabilities of the possible outcomes, rather than the
most likely outcome itself. Note that this is more general; when given a probability p we
can always apply some decision rule to predict the outcome, e.g., by assigning “no” if p lies
in the interval [0, %] and “yes” otherwise. The benefit of having a prediction in the form of a
probability is that it also expresses the certainty of a prediction: although the probabilities
.51 and .99 will both lead to a prediction of “yes” under the exemplary decision rule from
above, the latter probability is much farther away from the decision boundary, %, hence is
a much more confident prediction.

' Roseman Labs

2.2 Other Forms of Logistic Regression

A generalization of binary logistic regression is multi-class logistic regression (also called
multinomial logistic regression), in which there exist more than two outcome classes, say,
“apple”, “pear”, “banana” and “strawberry”. Another generalization is ordinal logistic regres-
sion, in which the (possibly more than two) outcome classes have a total ordering; think for
example of a risk score that can be “low”, “medium” of “high”. Although multi-class logistic
regression could in principle also be used for this risk-score example, the ordinal regres-
sion method will generally give better predictions because it exploits the extra information

provided by the ordering relation.

2.3 What is a Model?

We define a (binary) model as the function f that takes as input a vector x =
(Tq,...,xy) € RF of k real-valued feature values, and outputs a probability distri-
bution over the outcome Y € {0,1}. Because the probabilities that comprise a
probability distribution by definition add up to one, this probability distribution is simply
(1 — p,p), and can be represented by p alone, which is the conditional probability of
obtaining 1, conditioned on the features taking on the values that were given as input:

flz):=p=prlY =1|X =z

2.4 Mathematical Structure of the Logistic Regression Model

The logistic regression model is a member of the family of generalized linear models, which
have the following structure:
f@)=7(B+w-x)

where [3 is a parameter called the intercept, w = (wy, ... , Wy,) is a vector of model param-
eters, T - w denotes the dot product (or inner product) between x and w, and 7 : R — R
is some non-linear map. In case of logistic regression, 7 is taken to be the logistic function
or sigmoid function (plotted in Figure 2):

1

AMz)= ———.
(2) 1 + exp(—=2)

Note that the logistic function ensures that f(z) will always be in the interval [0, 1], hence

can always be interpreted as a probability.

A logistic regression model for k features thus has k + 1 parameters; one parameter per
feature, plus the intercept parameter.

2.5 Model Training

Informally speaking, the model can be viewed as a box with multiple knobs (like in Figure
3), one per model parameter. Each knob can be adjusted, and the combination of all knob-
settings (and the model architecture) determines how the model maps an input (the vector
of feature values x), to the output (the probability p). Training is the process of cleverly
adjusting the knobs based on given input-output pairs (training examples).

. Roseman Labs

Figure 2: The logistic (or sigmoid) function.

Figure 3: Metaphor of a machine learning model with tunable model parameters.

' Roseman Labs

Mathematically, model training is essentially optimizing a loss function that penalizes wrong
predictions on the training data set. When defined appropriately, the loss function of logis-
tic regression (the cross-entropy loss, which we will not define here) is convex, hence the
training problem can be solved easily using a standard optimization method.

Gradient Descent (GD) is an iterative first-order (as in first-order Taylor approximation) op-
timization method that in each iteration takes a step into the direction of the (negative)
gradient of the loss function. Stochastic Gradient Descent (SGD) approximates gradient
descent by calculating an estimate of the gradient of the loss function from a random sub-
set of the training data set (instead of using the entire training data set).

Newton’s method is a second-order optimization method, hence uses not only the gradient
but also the curvature (the Hessian matrix) of the loss function. The advantage of taking
the curvature into account is to get better asymptotic (namely, quadratic) convergence.
Because it is typically computationally expensive to compute the Hessian matrix (in fact,
its inverse is needed) in each iteration, so called quasi-Newton methods have been devised
to estimate the inverse Hessian matrix without too much computational work from the gra-
dient. An example of a quasi-Newton method is the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm.

Another important topic in the context of optimization, but which we will not discuss here
in detail, is how to choose the step size: how big of a step should be taken towards the
computed direction in each optimization iteration? And should this step be constant over
all iterations, or be determined in each iteration? And what is the impact of the chosen
step-size strategy on the stability and the convergence behavior?

If we ignore — for the sake of the argument — the influence of the choice of the step size
strategy, then we can expect that a second-order optimization method will require less
iterations to train a model up to a given quality level (see also the upcoming section about
model quality) when compared to a first-order method, or, alternatively, when keeping the
number of iterations fixed, the second-order method is expected to produce a better model
fit. (The latter is under the assumption that the training procedure has not yet converged;
otherwise there is no point to iterate further.)

3 Assessing the Quality of a Fitted Model

Various methods and goodness-of-fit metrics exist to assess the quality of a fitted model.
Especially if the model parameters are to remain secret (i.e., encrypted), evaluating the
quality metric should itself be performed as an encrypted computation. Also, the quality
metric should be concise, ideally a single number, because it typically has to be revealed for
some data analyst to judge it. If needed, though, the information leakage could be further
reduced by comparing (again, as an encrypted computation) the quality metric to some
lower bound, and revealing the (binary) result of this comparison. (l.e., declaring “success”
if the metric exceeded the lower bound, and declaring “failure, retraining needed with more
iterations” otherwise.)

In our experiments, however, we use a non-sensitive benchmark data set, hence for frame-
works that do currently not support evaluating the goodness-of-fit metrics as an encrypted
computation, we will simply reveal the trained model parameters and evaluate the metrics
using “cleartext computations”.

' Roseman Labs

A suitable goodness-of-fit metric for logistic regression is McFadden’s p2 (also known as
McFadden’s pseudo—R2 metric). McFadden’s p2 metric [MF77] is defined as:

£(B, w)

2. 1_
= By 0)

where £(3,w) is the log-likelihood function:

LBw) =Y [—log(l+exp(B+w-z))+yB+w-z),

(z,y)€(X,y)

and the notation (X', i) represents a data set: I represents a matrix of which each row is
a feature vector, and y is a (column) vector that contains the corresponding binary (0 or 1)
labels. Furthermore, 0 denotes the zero vector of length equal to that of w, and 60 is the
maximum likelihood estimate

)
= |
50 091__

where g is the mean of the labels .

The McFadden ,02 score is computed from the same likelihood function used to fit the
model, hence the McFadden score is evaluated on the training data set.

It holds that p2 < 1, and p2 could become negative which indicates a poor fit. The
interpretation according to McFadden is:

“[...] values of .2 to .4 for | p2] represent an excellent fit.” [MF75]

Note that because the McFadden score depends on the number of model parameters, it
should not be used to compare models having different numbers of parameters.

3.1 Predictive Power

To assess the model’s predictive power (based on evaluation on the test data set), we could
compute the mean squared error (MSE) or Brier score:

wsE= - S (y— f(@))*

(z,9)e(X,y)

where NN is the size of the (test) data set. It is easy to see that 0 < MSE < 1, and a model
that would predict perfectly would have M SE = 0.

Another relevant metric is Tjur’s coefficient of discrimination D [Tj09], which is defined as:

1 1
Doy X M-y X)

L(zy)e®.y) O (2,y)e(Xy)
st y=1 st y70
where N, = Zygy[y = b|, with [-] denoting the Iverson bracket. Tjur proves that D > 0

with equality if all predicted probabilities are equal to each other (which would mean that
the model has no predictive power), and D < 1 with equality if all predicted probabilities
are equal to the binary labels (meaning: the model makes perfect predictions).

https://en.wikipedia.org/wiki/Iverson_bracket

' Roseman Labs

4 Benchmarks for Elementary Tabular Operations in
Roseman Labs’ Platform
In this section we benchmark the performance of elementary tabular operations in Roseman

Labs’ MPC platform, like filtering rows of a table based on a predicate, joining tables and
performing a group-by.

To perform the benchmarks we make use of encrypted demo tables (crandas.demo_table),
which are tables of configurable dimensions that look as follows:

Table 1: Output of the crandas.demo_table command.

coll col2 col3 cold

1 1 1 1
2 2 2
3

3 3 3

It might seem that using these demo tables, with their simple structure, results in partic-
ularly “easy” problem instances for the filter/join/groupby protocols. This is not the case
because the protocols are fully oblivious; they cannot “see” the data and take some kind
of shortcut based on the structure.

One subtle issue that we need to take into account to get a fair benchmark is related to the
column bounds feature: each numeric column maintains a (public) lower and upper bound
on its elements (automatically updated throughout a computation), to be able to warn the
user about potential overflow. Moreover, certain operations adjust their behavior based on
these bounds for efficiency. Because a demo table has tight column bounds by default, we
manually re-define those bounds (by means of the astype method) for certain operations
(i.e., filter and groupby) to ensure that the tables used in those benchmarks have the same
bounds, regardless of the number of rows.

We benchmark the filter operation by creating a demo table having 10 columns and a varying
number of rows, which we filter with a predicate that includes the given row if the (secret)
value in its first column exceeds the constant value 100:

import crandas as cd
df = cd.demo_table(num_rows, 10)
filter_result = df.filter(df["coll"].astype("uint24") > 100)

We benchmark the join operation by creating two demo tables, each having 10 columns,
and join them on the first column:

join_result = cd.merge(cd.demo_table(num_rows, 10), \
cd.demo_table(num_rows, 10), on="coll")

Finally, we benchmark the group-by operation on a 10-column demo table with a varying
number of rows:

groupby_result = cd.demo_table(num_rows, 10).\
assign(coll=lambda x: x.coll.astype("uint24")).groupby("coll")

' Roseman Labs

Below, we first show single-CPU-core benchmark results in Table 2 as well as in plots in Fig-
ure 4. We then show how hardware parallelism can be used to speed up those operations
in Table 3 and Figure 5.

Single-core performance of filter, join & group-by

] =+- filter 9
L. 4
join e
103 - e
1 -®@- group-by ’
] -7 +
7 -7
» -
, Pid
—_ 2 7 Pid
o 104 5 pid ~*
g /// /’)'{
— ' ,/
e
- W 1 gl
- -
101 4 - A
’,/’/ ,/’
- /,
[2 ,,/
k| ”
o -
1004 ——=—=—
1 +°
103 104 10° 10° 107
#rows

Figure 4: Single-core performance of filter, join and groupby operations. For each bench-
marked protocol, the computation time scales approximately linearly in the number of rows.
Theoretically, the filter and join indeed have linear complexity in the number of rows, while
groupby has O(n Iog2 n) asymptotic complexity (where n denotes the number of rows)
because it uses a sorting subroutine with this complexity.

Table 2: Single-core performance of filter, join and group-by.

rows compute time (filter) compute time (join) compute time (groupby)
1,000 0.74s 1.48s 213s
10,000 1.51s 6.58s 18.47s
100,000 10.49s 34.96s 211.59s
1,000,000 58.92s 333.17s 3328.09s
10,000,000 566.84s

' Roseman La

throughput [rows/sec]

bs

filter & join
1000001 4~ filter R
jOin .,p//
4
80000 e —
7 9
* @
/ g
60000 - / o
/ —
=
/ 2
400004 « S
/
+ >
e
Il <
20000 14
0 B T T T T T T
12 4 8 12 16
#cCpu cores

group-by
-®- group-by /’
1600 - 4
/
/
1400 - s
/7
/
1200 A ’
}
/
1000 | /
/
l/
800 A
’
]
600 - /
$
400 ¢
12 4 8 12 16
#cpu cores

Figure 5: Scaling of throughput (rows/sec) when increasing the number of cores.

Table 3: Multi-core performance of filter, join and group-by. We
denote the results as pairs consisting of the number of rows
and the computation time. For example, the pair (1e7, 205.40s)
means that processing 10,000,000 rows took 205.40 seconds.
A reason for adjusting the number of rows depending on the
number of cores, is to ensure that the experiments run “long
enough” (in the order of hundreds of seconds), to minimize the
impact of parts of the computations whose compute time is
independent of the data volume.

(#rows, compute time

(#rows, compute time

(#rows, compute time

)))

#cores (filter) (join) (groupby)
1 (1e7,536.08s) (1e6, 333.17s) (1e5, 261.93s)

2 (1e7, 306.39s) (1e6, 193.48s) (1e5, 210.04s)

4 (1e7,205.40s) (1e6, 104.54s) (1e5, 131.29s)

8 (1e7,139.20s) (5e6, 284.37s) (5e5, 431.79s)

12 (1e7,114.38s) (5e6, 244.12s) (5e5, 353.40s)

16 (1e7,101.34s) (5e6, 169.39s) (5e5, 288.66s)

5 Benchmarking Model Training

We perform our logistic regression experiments with the UC Irvine “Covertype” data set,
which is a geological data set for classifying the forest cover type of a piece of land based
on various attributes such as elevation, aspect, slope, hill shade and soil-type. The original
data set consists of slightly more than half a million examples, each having 54 features,

10

' Roseman Labs

and 7 class labels. We can easily manipulate this data set for testing purposes, i.e., by
reducing the number of classes, examples, and/or features. Because of benchmarking
binary logistic regression, we will always restrict the dataset to the classes 1 and 2. Note
that there is some imbalance between those class labels, in that there are slightly more
than twice as many examples having label 2 than there are examples with label 1.

We performed experiments by training a logistic regression model, using the algorithm pro-
vided by each of the libraries under comparison (either GD, SGD or L-BFGS). To get a
baseline for the model quality, we have used the LogisticRegression (for L-BFGS) and
SGDClassifier (for SGD) functions from the Python scikit-learn library. For all MPC frame-
works, we set the statistical security parameter to 30 bits. We ran the experiments on Intel
x86 64-bit, 32-core Xeon 8468 servers with 64GB memory. Those servers reside in the
same data center with 1.5ms ping latency; in the MPC literature this is commonly referred to
as the LAN setting. Access to the server hardware was kindly provided by Intel Corporation,
via their Intel Liftoff program.

51 Frameworks/Libraries Compared

Roseman Labs Platform (crandas). crandas is the Python interface of our MPC platform,
which uses three-server (3-party) Shamir-sharing-based MPC in the honest-majority pas-
sive security setting. Version used: v10.1.

Data61 MP-SPDZ. MP-SPDZ is Data61s open-source MPC benchmarking framework.
Data61 is the data and digital specialist arm of Australia’s national science agency. MP-
SPDZ is also a circuit-compiler-based framework, and supports various MPC protocols;
we have run benchmarks with the 3-party replicated Mod-2"k variant (ring.sh). This
variant should be among the fastest protocols implemented in MP-SPDZ. The program
covtype.mpc program which we used for the benchmark can be found in the appendix. The
SGDLogistic function takes the program object, with which we can optionally provide the
approx compilation option, which will use a three-piece approximate sigmoid. We included
this option in our benchmark, but we did barely notice a performance difference. Version
used: v0.3.8.

TNO Secure Learning is TNO’s open-source MPC machine learning package. This pack-
age is built on top of MPyC, an open-source Python MPC framework developed by Berry
Schoenmakers from the Technical University of Eindhoven. TNO is an independent not-for-
profit research organization, roughly half-funded by the Dutch government. The logistic re-
gression training functionality of TNO Secure Learning uses gradient descent and has two
accuracy modes: a faster but coarse approximation to the exponential function (“APPROX"),
and a more accurate — albeit slower — one ("EXACT”). The inference part of the model has
not been published by TNO; to be able to compute the Tjur metric and Brier score we have
performed the inference part using a scikit-learn model in which we inserted the model
parameters trained by TNO’s method(s). Version used: v1.1.1.

5.2 Definitions: Epochs and Mini-Batches

To be able to make reasonable comparisons between the various methods and implemen-
tations, it is important to understand how each library defines a unit of work. A training
epoch is typically defined as one pass over the training data set. The max_iter parameter
of the scikit-learn functions LogisticRegression and SGDClassifier iS to be interpreted as

1

https://docs.rosemanlabs.com/latest/index.html
https://mp-spdz.readthedocs.io/en/latest/
https://github.com/TNO-MPC/mpyc.secure_learning

' Roseman Labs

the number of training epochs. In a single epoch, the fit method of SGDClassifier up-
dates the parameters n times, where n is the number of examples in the training data set.
A single such update is based on the gradient estimated from a single training sample.

MP-SPDZ also uses mini-batch SGD, but here a single epoch seems to (based on our ob-
servations during experiments) make a pass over the entire training data set.

5.3 Experiment: scikit-learn Logistic Regression Training Conver-
gence Behavior

In this and the following experiments, we reduce the Covtype data set to 10,000 examples,
which we split into 7000 training examples and 3000 test examples.

We start by running an experiment with scikit-learn, to get some feeling for the convergence
behavior of the SGD and L-BFGS algorithms (based on the implementations of those algo-
rithms available in scikit-learn) on our data set. More precisely, we run both algorithms
repeatedly, for an increasing number of training iterations, and each time compute the Mc-
Fadden p2 score of the model, as well as the mean squared error of the model’s probability
predictions on the test set. In other words, we run both algorithms for 1 iteration, com-
pute the McFadden and Brier scores, then refresh the algorithms’ states and re-run the
algorithms for two iterations, compute the McFadden and Brier score, etcetera, up to 100
iterations. For SGD, because it is a stochastic method, we repeat the above experiment
10 times, and ensure that within each of those runs, we fix the random coins that the SGD
algorithm uses (via the random_state option of SGDClassifier). Figure 6 shows the result
of this experiment. We see that the L-BFGS converges monotonically, whereas SGD has a
much more noisy convergence behavior.

5.4 Experiment: Training LR on 7000 Examples, 54 Features, Varying
Number of Iterations/Epochs

We now turn our attention to the encrypted-computing training methods. Note that be-
cause we compare not only between different algorithms (GD vs SGD vs L-BFGS), but also
between different implementations of those algorithms, it is not fully clear to what extent
one “training iteration” (or epoch) is comparable across those implementations (see also
Section 5.2). Hence, we experiment with varying epochs and focus on comparing the train-
ing time versus the model-quality metrics.

For each method, we let it perform the training procedure (for a given number of iterations or
epochs) and then compute the McFadden p2 score, and Tjur's D and Brier (MSE) score (the
latter two based on the 3000 test examples). Note that the “training time” as reported in
the table below excludes the inference step (probability prediction) required for evaluating
the Tjur and Brier metrics (see next section for inference benchmarks).

We first compare crandas MPC L-BFGS-based logistic regression training method with
scikit-learn as a cleartext-training baseline for various epochs. We see that the methods
behave similarly in terms of model quality vs. the number of training epochs.

12

' Roseman Labs

T TR T il SGD (run 1)
0.30 1 ‘ l‘(| d’("’" "u’! f T 06 SGD (run 2)
“‘«\ ﬂ !' i | S SGD (run 3)
0.25 | ’ il 5 0.5 - SGD (run 4)
LN < SGD (run 5)
%020 ‘ = SGD (run 6)
5 | c 041 SGD (run 7)
T 0.15 aE“3 SGD (run 8)
5 - SGD (run 9)
=010 il gos3 SGD (run 10)
§ —— L-BFGS
0.05 + 2024 N |
m 0 Rl |
0.004 L SN e UctobV b AL
0 20 40 60 80 100 0 20 40 60 80 100
#training iterations #training iterations

Figure 6: Comparison of the convergence behavior of scikit-learn’s L-BFGS-based
LogisticRegression function and SGD-based SGDClassifier. Due its non-stochastic na-
ture, the L-BFGS converges monotonically, whereas SGD has a much more noisy conver-
gence behavior. Note that although the McFadden p2 score can become negative if the
model fits poorly, in the left plot we replace negative McFadden scores by zero for the sake
of readability.

Table 4: Comparison of crandas’ L-BFGS-based logistic regres-
sion training to the scikit-learn baseline. We see that the meth-
ods behave similarly in terms of model quality vs. the number
of training epochs.

Optim. Training
Library Epochs method McF p2 Tjur D Brier time
scikit-learn 1 L-BFGS 0.0033 0.0077 0.2165 <1s
crandas MPC 1 L-BFGS -0.7979 0.0039 0.3008 6.09s
scikit-learn 10 L-BFGS 0.1624 01920 01764 <1s
crandas MPC 10 L-BFGS 0.1410 01285 01811 40.54s
scikit-learn 20 L-BFGS 0.2465 0.2867 0.1562 <1s
crandas MPC 20 L-BFGS 0.2504 0.2802 0.1545 76.75s
scikit-learn 30 L-BFGS 0.2858 0.3398 0.1446 <1s
crandas MPC 30 L-BFGS 0.3135 0.3184 0.1454 104.98s

We now show some benchmarks of MP-SPDZ (runtime: Rep3-Mod2”k) on the same
dataset. We use mini-batches of size 10. A single training epoch with MP-SPDZ’s
SGD-based training algorithm already gives a reasonable fit (unlike scikit-learn’'s SGD
implementation, i.e., see Figure 6) and takes roughly 220 seconds (averaged over 3 runs).
If we compare these results to Table 4, we see that Crandas finds a superior fit (judging
from the higher McFadden score) in about 105 seconds (twice as fast) using 30 L-BFGS
iterations.

13

' Roseman Labs

Table 5: Experiments with MP-SPDZ SGD-based logis-
tic regression training. (Note that we use the three-
party passively-secure replicated-secret-sharing-based run-
time, Rep3-Mod2”k.) The second last entry uses the piece-
wise sigmoid approximation, which seems to have only minor
impact on the model quality as well as on the running time.
The last line shows the result of running 30 epochs with scikit-
learn’s (non-mini-batch) SGD implementation.

Optim. Training
Library Epochs method McF ,02 Tjur D Brier time
MP-SPDZ 1 SGD 0.2172 0.2526 0.1610 213.81s
MP-SPDZ 1 SGD 0.2263 0.2282 0.1589 221.46s
MP-SPDZ 1 SGD 0.2336 0.2611 0.1562 228.78s
MP-SPDZ 10 SGD 0.3065 0.3410 01408 2,429.38s
MP-SPDZ 20 SGD 0.2099 0.3748 0.1601 4,906.12s
MP-SPDZ 30 SGD 0.3120 0.3915 0.1375 7,375.35s
MP-SPDZ 30 SGD 0.3180 0.3855 01372 7,210.15s
(“approx”)
scikit-learn 30 SGD 0.2832 0.3923 0.1436

For TNO’s Secure Learning library we have to manually choose a step size for the optimizer
(chosen to be a fixed step size 0.1). The results are shown in Table 6. Both the faster ‘approx’
and slower ‘exact’ variant fail to produce good fits for the explored parameter space.

Table 6: Experiments with TNO Secure Learning GD-based lo-
gistic regression training. The (fixed) step size is chosen to be
0.1. The method fails to find a good model fit, even after 30
training epochs. The lack of multi-threading partly explains the
long running times.

Optim. Training
Library Epochs method McF p2 Tjur D Brier time
TNO-approx 10 GD -0.0482 0.0124 0.2301 857.33s
TNO-approx 20 GD -0.0325 0.0251 0.2254 1,581.22s
TNO-approx 30 GD -0.0227 0.0327 0.2225 2,30712s
TNO-exact 10 GD 0.0228 0.0155 0.2109 17,240.49s
TNO-exact 20 GD 0.0490 0.0370 0.2035 34,617.72s
TNO-exact 30 GD 0.0720 0.0605 0.973 50,061.19s

5.41 Experiment: LR Inference on 100,000 Examples, 54 Features

Here we compare the performance of evaluating the logistic regression model (inference),
namely to let the model predict probabilities (the predict_proba method in scikit-learn).
In the table below, we have measured the inference time, and computed from this the
inference rate. We do not show inference benchmarks for TNO’s Secure Learning library,

as its inference procedure is not part of the publicly available software library.

14

' Roseman Labs

Table 7: Inference benchmarks

Library Inference time Inference rate (examples/sec)
crandas MPC 39.34s 2542
MP-SPDZ 32.40s 3086
MP-SPDZ (approx) 32.24s 3102

6 References

[G22] Gartner, “Gartner Identifies Top Five Trends in Privacy Through 2024”, 2022.
[MF75] Daniel McFadden, “Urban Travel Demand: A Behavioral Analysis”, Chapter 5, 1975.

[MF77] Daniel McFadden, “Quantitative Methods for Analyzing Travel Behavior of Individu-
als: Some Recent Developments”, 1977, page 35.

[TjO9] Tue Tjur, Coefficients of Determination in Logistic Regression Models—A New Pro-
posal: The Coefficient of Discrimination, 2009.

7 Appendix

71 Computing McFadden’s p2 in Python

import numpy as np

def mcfadden_pseudo_r2(X, y, w, intercept):
Compute McFadden's pseudo-R"2 metric, which s a metric for
judging the quality of a fitted logistic regression model.

The interpretation according to McFadden <s:

"[...] values of .2 to .4 for [rho_2] represent an excellent
fit." (See "Quantitative Methods for Analyzing Travel
Behaviour of Individuals: Some Recent Developments", 1977,
page 35.)

Parameters
X : 2d numpy array of numbers
m-by-n data matriz with m examples each having n features
y : length-m numpy array, each value \in {0,1}
labels corresponding to the examples in X
w : length—-n numpy array
model parameters
intercept : scalar
intercept value of the model

mmnn

X_dot_w = np.dot(X,w.transpose())

15

https://www.gartner.com/en/newsroom/press-releases/2022-05-31-gartner-identifies-top-five-trends-in-privacy-through-2024
https://eml.berkeley.edu/~mcfadden/travel/ch5.pdf
https://www.jstor.org/stable/25652317
https://www.jstor.org/stable/25652317

' Roseman Labs

yy = y.reshape(X_dot_w.shape)
log_likelihood_func = lambda x: \
np.sum(-np.log(l + np.exp(x)) + yy * x)
11_model = log_likelihood_func(intercept + X_dot_w)
y_mean = np.mean(y)
betald = np.log(y_mean / (1 - y_mean))
11_null = log_likelihood_func(beta0)
return 1 - 11_model / 11_null

7.2 Computing Tjur’s D and Brier score in Python

import numpy as np

def TjurD(labels, predictions):
Compute Tjur's D metric, which is a metric for judging the
quality of a fitted logistic regression model.

It holds that D \in [0, 1], where D=0 means that the model
has no predictive power and D=1 would say that the model
15 a perfect predictor.

Parameters

labels : length-m numpy array, with each wvalue in {0,1}
class labels of the test set

predictions : m-by—-2 matriz, with probability predictions
made by the model on the test set
(each row has the form (p, 1-p) with

p \in [0,1])
return np.mean(predictions([labels == 0,0]) \
- np.mean(predictions[labels == 1, 0])

def Brier(labels, predictions):
return np.sum((predictions[:,1] - labels)**2)/len(labels)

7.3 MP-SPDZ Script for Log.Reg. Experiment

On each server, the MP-SPDZ compiler was invoked with the following options:
./compile.py -E ring covtype

and, to enable the approximate sigmoid function, with:

./compile.py -E ring covtype approx

Then, to run the program interactively over the network, the program was invoked on each
server with:

./replicated-ring-party.x <party id> covtype -S 30 -h <party O ip>

16

' Roseman Labs

The MP-SPDZ program is given below.

Programs/Source/covtype.mpc
program.use_trunc_pr = True
program.use_edabit (True)

DATASET_CUTOFF_SIZE = 10000
DATASET_CUTOFF_SIZE2= 100000
FEATURES = 54

TEST_SPLIT = 0.3
TRAINING_ITERATIONS = 30
MINI_BATCH_SIZE = 10

import pickle, pathlib

from sklearn.datasets import fetch_covtype
from Compiler import ml
ml.set_n_threads(32)

path = 'dataset.bin'
if pathlib.Path(path).is_file():
with open(path, 'rb') as infile:
dataset = pickle.load(infile)
else:
dataset = fetch_covtype()
with open(path, 'wb') as outfile:
pickle.dump(dataset, outfile, 5)

The covtype dataset has labels 1 up to 7.
We create a dataset with only two labels (1, 2) out of this
suited for binary logistic regression

binary_filter = (dataset['target'] == 1) | (dataset['target'] == 2)
X = dataset['data'] [binary_filter]

y = dataset['target'] [binary_filter]

print('Dataset size after restricting to two classes:', len(X))

data_range = range(0O, DATASET_CUTOFF_SIZE)

from sklearn.preprocessing import MinMaxScaler

Xnorm = MinMaxScaler(feature_range=(-1, 1)).\
fit_transform(X[data_range, :FEATURES])

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(Xnorm, \

y[data_rangel], test_size=TEST_SPLIT, random_state=42)

X_train_mpc = sfix.input_tensor_via(0, X_train)

17

' Roseman Labs

y_train_mpc = sint.input_tensor_via(0, y_train-1)
X_test_mpc = sfix.input_tensor_via(0, X_test)
y_test_mpc = sint.input_tensor_via(0, y_test-1)

from Compiler import library

Benchmark training on 7,000 rows

library.start_timer (1)

log = ml.SGDLogistic(TRAINING_ITERATIONS, MINI_BATCH_SIZE, program)
log.fit(X_train_mpc, y_train_mpc)

library.stop_timer(1)

Benchmark inference on 100,000 rows

data_range = range(0, DATASET_CUTOFF_SIZE2)

Xnorm2 = MinMaxScaler(feature_range=(-1, 1))\
.fit_transform(X[data_range, :feature_range])

X_infbench_mpc = sfix.input_tensor_via(0, Xnorm2)

library.start_timer(2)

pred = log.predict_proba(X_infbench_mpc) .reveal ()

library.stop_timer(2)

Reveal predictions on 3,000 rows for quality estimation
print_1n('%s', (log.predict_proba(X_test_mpc)).reveal())
print_1n('%s', (log.opt.layers[0].W).reveal())
print_1n('%s', (log.opt.layers[0].b).reveal())

7.4 TNO Secure Learning Script for Log.Reg. Experiment

The script has been adapted from a demo script from the TNO Secure Learning distribution.

import numpy as np
from mpyc.runtime import mpc
import time
from tno.mpc.mpyc.secure_learning import (
ExponentiationTypes,
Logistic,
PenaltyTypes,
SolverTypes,

Fized random state for train-test-split reproducibility
STATE = 42

tolerance inactive in practice; max_titer s reached earlier
tolerance = le-4

secnum = mpc.SecFxp(1=64, f=32)

def load_data():

18

' Roseman Labs

DATASET_CUTOFF_SIZE = 10000
FEATURES = 54
TEST_SPLIT = 0.3

import pickle, pathlib
from sklearn.datasets import fetch_covtype
path = 'dataset.bin'’
if pathlib.Path(path).is_file():
with open(path, 'rb') as infile:
dataset = pickle.load(infile)
else:
dataset = fetch_covtype()
with open(path, 'wb') as outfile:
pickle.dump(dataset, outfile, 5)

The covtype dataset has labels 1 up to 7.
We create a dataset with only two labels (1, 2) out of this
suited for binary logistic regression

binary_filter = (dataset['target'] == 1) | \
(dataset['target'] == 2)
X = dataset['data'] [binary_filter]

y = dataset['target'] [binary_filter]
print('Dataset size after restricting to two classes:', len(X))
data_range = range(0, DATASET_CUTOFF_SIZE)

from sklearn.preprocessing import MinMaxScaler
Xnorm = MinMaxScaler(feature_range=(-1, 1)).\
fit_transform(X[data_range, :FEATURES])

from sklearn.model_selection import train_test_split
return train_test_split(Xnorm, y[data_range], \
test_size=TEST_SPLIT, random_state=STATE)

def get_mpc_data(X, y):
X_mpc = [[secnum(x, integral=False) for x in row] \
for row in X.tolist()]
y_mpc = [secnum(y, integral=False) for y in y.tolist()]
return X_mpc, y_mpc

def distribute_data_over_players(X_mpc, y_mpc):
X_shared = [mpc.input(row, senders=0) for row in X_mpc]
y_shared = mpc.input(y_mpc, senders=0)
return X_shared, y_shared

async def logistic_regression_example():
print(
"Logistic regression training with 12 penalty, \
with gradient descent method"

19

' Roseman Labs

alpha = 0.1

X_train, X_test, y_train, y_test = load_data()
X, y = X_train, y_train-1

Transform labels from {0, 1} to {-1, +1F}.

= [-1 if x == 0 else 1 for x in y]

= np.array(X)

= np.array(y)

_mpc, y_mpc = get_mpc_data(X, y)

MR N

async with mpc:
X_shared, y_shared = \
distribute_data_over_players(X_mpc, y_mpc)

Train secure model with approximation of logistic function
(faster, less accurate)
model = Logistic(
solver_type=SolverTypes.GD,
exponentiation=ExponentiationTypes.APPROX,
penalty=PenaltyTypes.L2,
alpha=alpha

start = time.time()
async with mpc:
coef_approx = await model.compute_coef_mpc(
X_shared, y_shared, tolerance=tolerance, \
nr_maxiters = 30

)

stop = time.time()

print ("Training approx took :", stop - start)

print("Coefficients (approximated exponentiation):", coef_approx)

Train secure model with ezact logistic function (slower, more accurate)
model2 = Logistic(

solver_type=SolverTypes.GD,

exponentiation=ExponentiationTypes.EXACT,

penalty=PenaltyTypes.L2,

alpha=alpha

start2 = time.time()
async with mpc:
coef_exact = await model2.compute_coef_mpc(
X_shared, y_shared, tolerance=tolerance, nr_maxiters = 30
)
stop2 = time.time()

20

. Roseman Labs

print("Training exact took :", stop2 - start2)
print("Coefficients (exact exponentiation):", coef_exact)
if __name__ == "_main_ ":

mpc.run(logistic_regression_example())

21

	Introduction
	Making Encrypted Computing Mainstream
	Data Preparation in the Context of Collaborative Encrypted Computing

	Preliminaries
	Binary Logistic Regression
	Other Forms of Logistic Regression
	What is a Model?
	Mathematical Structure of the Logistic Regression Model
	Model Training

	Assessing the Quality of a Fitted Model
	Predictive Power

	Benchmarks for Elementary Tabular Operations in Roseman Labs’ Platform
	Benchmarking Model Training
	Frameworks/Libraries Compared
	Definitions: Epochs and Mini-Batches
	Experiment: scikit-learn Logistic Regression Training Convergence Behavior
	Experiment: Training LR on 7000 Examples, 54 Features, Varying Number of Iterations/Epochs
	Experiment: LR Inference on 100,000 Examples, 54 Features

	References
	Appendix
	Computing McFadden’s \rho^2 in Python
	Computing Tjur’s D and Brier score in Python
	MP-SPDZ Script for Log.Reg. Experiment
	TNO Secure Learning Script for Log.Reg. Experiment

