crandas.groupby#

Crandas groupby functionality

class crandas.groupby.Aggregator(aggregator)#

Bases: object

Aggregation functions for use as arguments to CSeriesGRoupBy.agg()

class crandas.groupby.CDataFrameGroupBy(table, columns, duplicated_size=None, aggregated_size=None, **kwargs)#

Bases: StateObject

Represents a grouping of a table according to one or more columns

__getitem__(key)#

Implements [] operator by dispatching to CDataFrameGroupBy.col

as_table(**query_args)#

Returns a table containing the grouping columns :returns: Table containing the grouping columns :rtype: CDataFrame

col(col)#

Returns a reference to another grouping grouped according to the grouping

Parameters:

col (str) – Name of the column

Returns:

Grouping of the column for use e.g. in aggregation

Return type:

CSeriesGroupBy

classmethod json_to_closed(deferred, json_answer)#

Returns an instance of the class corresponding to to the provided JSON represention.

If the instance comes from a transaction, then deferred is the deferred object originally returned by vdl_query. This function should then check that the returned answer complies with the expected deferred. Otherwise, deferred is None.

size(**query_args)#

Returns sizes of the groups of the grouping

Parameters:

query_args (query arguments) –

Returns:

CDataFrame with column of grouping values and column of counts

Return type:

CDataFrame/DataFrame

class crandas.groupby.CSeriesGroupBy(groupby, col)#

Bases: object

Represents a grouping of a table column according to the values of one or more other columns

agg(fn, **query_args)#

Aggregate column according to grouping

Parameters:

fn (Aggregator) – aggregation function to use, e.g., crandas.groupby.sum

Returns:

CDataFrame containing the grouping columns and an aggregate of the grouped-by column

Return type:

CDataFrame

crandas.groupby.max = <crandas.groupby.Aggregator object>#

Aggregator that computes the minimum of the given values

crandas.groupby.sum = <crandas.groupby.Aggregator object>#

Aggregator that computes the maximum of the given values